Normalization without reducibility

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proof of strong normalization by reducibility modulo for λσw

1 A proof of strong normalization of λσw We admit all along this proof the following properties: • Confluence and termination of the substitution part of λσw written −→es [ACCL90]. • Subject reduction of λσw [ACCL90] The scheme of the proof is the following one: 1. We (re-)define λσw and it’s typing system and remark that this version of λσw has the subject reduction property. 2. We define a ne...

متن کامل

Iris Recognition Without Iris Normalization

Problem statement: In any real time biometric system processing speed and recognition time are crucial parameters. Reducing processing time involves many parameters like normalization, FAR, FRR, management of eyelid and eyelash occlusions, size of signature etc. Normalization consumes substantial amount of time of the system. This study contributes for improved iris recognition system with redu...

متن کامل

Noetherian rings without finite normalization

A number of examples and constructions of local Noetherian domains without finite normalization have been exhibited over the last seventy-five years. We discuss some of these examples, as well as the theory behind them.

متن کامل

Exploratory fMRI Analysis without Spatial Normalization

We present an exploratory method for simultaneous parcellation of multisubject fMRI data into functionally coherent areas. The method is based on a solely functional representation of the fMRI data and a hierarchical probabilistic model that accounts for both intersubject and intra-subject forms of variability in fMRI response. We employ a Variational Bayes approximation to fit the model to the...

متن کامل

Cosine Similarity Scoring without Score Normalization Techniques

In recent work [1], a simplified and highly effective approach to speaker recognition based on the cosine similarity between lowdimensional vectors, termed ivectors, defined in a total variability space was introduced. The total variability space representation is motivated by the popular Joint Factor Analysis (JFA) approach, but does not require the complication of estimating separate speaker ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2001

ISSN: 0168-0072

DOI: 10.1016/s0168-0072(00)00030-0